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Introduction 

1 Mathematical Formulation 

An infinite extent horizontal liquid saturated porous layer of thickness, d, whose 

lower and upper bounding planes are at z=0 and z=d respectively is considered(see 

Fig.1). The liquid is assumed to be a viscous, Newtonian liquid. The upper and lower 

boundaries are maintained at constant temper- atures T0 and T0 + T ( T > 0) 

respectively. For mathematical tractability we confine  ourselves to two-dimensional 

longitudinal rolls so that all physical quantities are independent of x, a horizontal co-

ordinate. The region of inter- est is R =   (y, z)/    < y <    , 0     z     d  . The 

boundaries are assumed to be stress-free and isothermal. In this project we assume the 

dynamic co- efficient of viscosity of the liquid, µl, and effective thermal diffusivity of 

the liquid, αl, to be constants. However, the density of the carrier liquid, ρl, is 

temperature-dependent. 

We assume that the Boussinesq approximation is valid. The governing equa- tions  

describing  the  Rayleigh-Bénard-Brinkman  instability  situation  in  a Newtonian liquid 

saturated porous medium are: 

Conservation of Mass 

 

Conservation of momentum 

∇. q = 0, (1) 

ρ  

  
∂q 

+ (q.∇)q

   

= −∇p + µ
′ 
∇2q + ρ g − 

µ 
q, (2) 
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Figure 1: Physical configuration 

 

Conservation of energy 

 

∂T 

∂t 

Equation of state 

 

+ (q.∇)T = χ∇2T, (3) 

ρ(T ) = ρ0[1 − α(T − T0)], (4) 

where q = (0, v, w) is the velocity vector, v is the horizontal component of velocity, w is 

the vertical component of velocity, y is the horizontal coordi- nate, z is the vertical 

coordinate, T0 is the reference temperature, ρl is the density of the liquid at T = T0, t 

is the time, p is the pressure, µ is the dynamic coefficient of viscosity of the liquid, µ
′ 

is the effective viscosity, αl is the coefficient of thermal expansion of the liquid, T is 

the dimensional temperature,  g  =     gk̂  is  the  acceleration  due  to  gravity,  χ  is  the  

effective thermal diffusivity of the liquid and kl is the thermal conductivity of the 

liquid. 

Since we are considering two-dimensional convective motion, we have 

q = v(y, z, t)̂j + w(y, z, t)k̂,  T  = T (y, z, t),  ρ = ρ(y, z, t),  p = p(y, z, t).  (5) 
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+ v + w 
∂t ∂y ∂z 

=   − 
∂y 

+ µ 
∂y2 

+ 
∂z2 

— 
k

v, (7) 

+ v + w 
∂t ∂y ∂z 

=   − 
∂z 

+ µ 
∂y2 

+
 

— 
k

w − ρg, (8) 

+ v + w =  χ 
∂t ∂y ∂z ∂y2 

+
 

b b 0 
d 

b b b 

Sing Eq. (5) in Eqs. (1)-(4), we get 

 

∂v ∂w 

+ 

∂y ∂z 

=  0, (6) 

 
∂v ∂v ∂v 

 
 ∂p ′  

 
∂2v ∂2v

 
µ 

 

  
 

∂w ∂w ∂w 
 
 ∂p ′  

 
∂2w ∂2w

 
µ 

 

  

 

∂T ∂T ∂T 
 
∂2T ∂2T 

 
 

 

  

 

 

The expression for the effective viscosity and effective thermal conductivity are 

appropriate for spherical-particles suspended in a carrier liquid. Taking the velocity, 

temperature and density fields in the quisecent basic state to be qb(z) = (0, 0), Tb(z) and 

ρb(z), we obtain the quiescent state solution in the form: 

q  = (0, 0), T  = T  + ∆T 
  

1 − 
z 

  
, p  = −g 

∫ 

ρ (T )dz + c, (10) 

 

where c is the constant of integration. The quiescent basic state is motionless and, in fact, 

the initial state of the system. On the quiescent basic state we superimpose 

perturbation in the form: 

v = vb + v
′
,  w = wb + w

′
,  T  = Tb + T

′
,  ρ = ρb + ρ

′
,  p = pb + p

′
,       (11) 

where the prime indicates a perturbed quantity. 

Now, the governing equations (6)-(9) become 

 

 

 

∂z2 

∂z2 

ρ0 

ρ0 

. (9) 
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′

 

k 

  

+ v 
∂t 

+ w 
∂y 

=   − 
∂y 

+ µ 
∂y2 

+
 

— 
k

v , (13) 

d 

∂y2 
+ 
∂z2 

— 
k

v, (20) 

∂v
′
 

 

 

∂y 

∂w

′
 

+ 

∂z 

 

=  0, (12) 

 
∂v

′
 

 

 

′ 

∂v
′
 

 

 

′ ∂v
′  

 

 

 

 

 

∂p
′ 

′  
 

∂2vJ ∂2v
′   

µ   ′ 

 

   

 

 

∂w
′
 

ρ0 + v 

∂t 

∂w
′
 

+ 

w 

∂y 

′ 

∂w
′
 

 

 

∂z 

∂p
′
 

= − 
∂z  

+ µ 

∂2w
′
 

∂y2  

+
 

∂2w

′
 

 

 

∂z2 

 

 

(14) 

— 
µ

w
′ 

− ρ
′ 
(T

′ 
)g, 

 

∂T
′
 

+ v 

∂t 

∂T
′
 

+ 

w 

∂y 

∂T
′
 

+ 

w 

∂z 

′  
  

−
ΔT 

∂2T
′
 

=  χ 
∂y2 

+ 

∂2T

′
 

 

 

∂z2 

 

, (15) 

 

But 
ρb(Tb) + ρ

′ 
(T

′ 
) = ρ0[1 − α(Tb + T

′ 
− T0)].      (16) 

ρb(Tb) = ρ0[1 − α(Tb − T0)].                  (17) 

Using Eq. (17) in Eq. (16), we get 

ρ
′ 
(T

′ 
) = −αρ0T

′
.     (18) 

For simplicity we neglect the primes in Eqs. (12)-(18) to get 

 

∂v ∂w 

+ 

∂y ∂z 

∂z 

∂z2 

′ 
    

′ ′ 
  

  

ρ0 
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+ v + w 
∂t ∂y ∂z 

=   − 
∂y 

+ µ 

+ v + w + w 
∂t ∂y ∂z ∂y2 

+
 

=  0, (19) 
 

∂v ∂v ∂v 
 
 ∂p ′  

 
∂2v ∂2v

 
µ 

 

  

 
 

∂w ∂w ∂w 
 
 ∂p ′  

 

∂2w 

 

 

∂2w 
 
 

 

 

ρ0 + v + w 

∂t ∂y ∂z 

= − 
∂z 

+ µ 

µ 

∂y2 

+
 

∂z

2 

(21) 

— 
k

w + αρ0Tg, 

 

 

∂T ∂T ∂T 

ΔT 
 

 

 

 

 
∂2T ∂2T 

 
 

 

 

 

 

Equations (19)-(22) are four equations in the four unknowns v, w,  p and T . 

 

Differentiating Eq. (20) with respect to ‘ z ’, we get 
  

∂   
  

∂v
 

∂ ∂v ∂v 
   

∂2p ′  
   

∂2 

∂2 
   

∂v 

 

 

 

µ ∂v 

ρ0 

∂t ∂z 

+ v + w 

∂z ∂y

 ∂z 

= − 
∂y∂z 

+µ 
∂y2 + 

∂z2 

∂z 
− 

k ∂z
.
 

(23) 

Differentiating Eq. (21) with respect to ‘y’, we get 
  

∂   
  

∂w
 

∂ ∂w ∂w 
   

∂2p ′  
   

∂2 

∂2 
   

∂w 

 

 

ρ0 ∂t ∂y + v + w 

d 

∂z2 

ρ0 

− =  χ . (22) 
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∂y2 
+ 
∂z2 

∂z 
−

 

— 
k
 

∂z 
−

 

∂y 
− αρ0g 

∂y
 

∂y ∂y

 ∂z 

= − 
∂y∂z 

+ µ 

µ ∂w 

∂y2 + 
∂z2

 ∂

y 

∂T 

 

— 
k ∂y 

+ αρ0g 
∂y 

. 

(24) 

Substracting Eq. (23) from Eq. (24), we get 

ρ   
∂  

  
∂v 

− 
∂w 

   

+ ρ   
∂   

  

v
∂v 

+ w
∂v 

  

− ρ
 ∂   

 

v
∂w 

+ w
∂w 

 
 

0 ∂t ∂z ∂y 0 ∂z ∂y

 ∂z 

0 ∂y

 ∂

y 

∂z 
(25) 

′  
   

∂2 ∂2 
      

∂v 

 

 

∂w 
 

 

 

 

µ  
   

∂v

 ∂

w 

∂T 
 

 

 

We now reduce the number of dependent variables by making use of the stream 

function. 

Let us introduce the stream function ψ(y, z, t) in the form 

 

∂ψ ∂ψ 

 

Noting that 

v = 
∂z 

, w = − 
∂y 

. (26) 

∂v ∂w 2 

 

∂z 
−

 ∂y  
= Q ψ (27) 

and substituting Eqs. (26)-(27) in Eq. (25), we get 

∂ 2 ∂T J 4 µ 2 

 

   

∂(ψ, ∇2ψ) 

 

∂y 

= µ 

. 
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d d d2 χ ∆T 

∂τ ∂Y ∂(Y, Z) 

    

2 

∂t d ∂y ∂(y, z) 

ρ0 
∂t 

(∇ ψ) = −αρ0g 
∂y 

+ µ ∇ ψ − 
k 
∇ ψ + ρ0 . (28) 

∂(y, z) 

 

Using the stream function from Eq. (26) in Eq. (22), we get 

∂T  
= − 

  
ΔT 

   
∂ψ 

+ χ Q2 T + 
∂(ψ, T )

. (29)
 

 

 

 

Equations (28) and (29) are the governing stability equations for Rayleigh- Bénard-

Brinkman convection.  There are two equations in the two unknows ψ and T . 

1.1 Non-Dimensionalization 

We non-dimensionalize Eqs. (28) and (29) using the following definition: 

(Y, Z) = 
  

y 
,  

z 
  

,  τ = 
tχ

,  Ψ = 
ψ

, Θ = 
 T  

. (30) 

 

Using the Eq. (30) in Eqs. (28) and (29), we obtain the dimensionless form of the 

vorticity and heat transport equations in the form: 

1   ∂ 2 

 

 

∂Θ 4 

 

 

2 2

 1 

∂(Ψ, ∇2Ψ) 

Pr ∂τ 
(∇ Ψ) = −Ra 

∂Y  
+ Λ Q Ψ − σ ∇ Ψ + 

Pr
 , (31) 

∂(Y, Z) 

∂Θ 
= − 

∂Ψ 
+ ∇2Θ + 

∂(Ψ, Θ)
, (32) 

where Pr =  

µ
 

ρχ 

 

is the Prandtl number, 

Ra = αρ0gd3∆T 

µχ 

is the Rayleigh number, 

µ
′ 

is the ratios of viscosity 

µ 

d 
is the porous parameter. K 

 

Equations (31) and (32) are the non-dimensional versions of the govern- ing 

, 
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c 

δ 

c 

πkc πkc 

— ± 

stability equations for Rayleigh-Bénard convection.  These equations are solved 

using the boundary / periodicity conditions: 

∂2 ∂Ψ 
Ψ 

= 
∂Z2 ∂Y 

 

= Θ = 0 at Z = 0, 

1, 

 
, (33) 

 2π 2π 

Ψ(Y ± , Z) = Ψ(Y, Z),  Θ(Y ± , Z) = Θ(Y, Z),  

 

where πkc is the critical wave number. In the next section we discuss the linear 

stability analysis of the system which is of great utility in the local nonlinear stability 

analysis to be discussed further on. 

 

1.2 Linear Stability Analysis 

It can easily be proved that the principle of exchange of stabilities (PES) is valid 

in the problem and hence we consider only the marginal stationary state. In order to 

make a linear stability analysis we consider the linear and steady-state version of 

Eqs. (31)-(32) and assume the solutions to be periodic waves of the form: 

Ψ(Y, Z) = Ψ0 sin(πkcY ) sin(πZ), (34) 

Θ(Y, Z) = Θ0 cos(πkcY ) sin(πZ). (35) 

The quantities Ψ0 and Θ0 are, respectively, amplitudes of the stream function and 

temperature. The normal mode solutions of Eqs. (34) and (35) satisfy the 

boundary / periodicity conditions in Eq. (33). 

 

Following standard procedure, we can obtain the expression for the critical Rayleigh 

number and wave number in the form: 

 

Rac = 

6 

c 

 

π2k

2 

σ

2 

Λ +

 

2 

c 

 

, k2 

= 

(Λπ2 + σ2) 
√

9π4Λ2 + 10Λπ2σ2 + σ4 

4Λπ2 .
 

δ 
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Ra  =  
π 

,  k   =  √
k

 

c 

δ 

δ 

dτ 2 
c  

dA  
= Pr

 
−πkcRa 

B(τ ) − (Λδ2 + σ2)A(τ )

 

,  

= 
dτ 2   

A(τ )B(τ ) − 4π 

dτ 2 
c 

c 

 

c 

If Λ = 1 and σ2 = 0, we get 

δ6 1 

     c  

c 2 2 c c 

, (36) 

2 

where the critical Rayleigh number, Rac, indicates transition from linear to nonlinear 

instability and δ2 = π2(kc
2 +1). The linear theory predicts only the condition for the onset 

of convection and is silent about the heat transport. We now embark on a weakly 

nonlinear analysis by means of a truncated representation of Fourier series for stream 

function and temperature fields to find the effect of various parameters on finite-

amplitude convection and to know the amount of heat transfer. 

2 Weakly Nonlinear Stability Analysis 

The first effect of nonlinearity is to distort the temperature field through the 

interaction of Ψ and Θ. The distortion of the temperature field will correspond to a 

change in the horizontal mean, i.e., a component of the form sin(2πz) will be generated. 

Substituting a minimal double Fourier series which describes the unsteady finite-

amplitude convection in a Newtonian liquid given by 

Ψ(Y, Z, τ ) = A(τ ) sin(πkcY ) sin(πZ), (37) 

Θ(Y, Z, τ ) = B(τ )  cos(πkcY )  sin(πZ) − C(τ )  sin(2πZ), (38) into 

Eqs.  (31)-(32) and adopting the standard orthogonalization procedure for the 

Galerkin expansion, we obtain the following system of equations. 

 

 

dB 
= −πk A(τ ) − δ2B(τ ) + π2k A(τ )C(τ ),

 

. (39) 

dτ 
c c c 

dC π2kc 2 

 

 

If Λ = 1 and σ2 = 0 in Eq. (39), we get the classical form of the Lorenz model: 

dA 
= Pr

 
−πkcRa 

B(τ ) − δ2A(τ )

  

, 
 

C(τ ). 
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= 
dτ 2   

A(τ )B(τ ) − 4π 

c 

        

c 

  

1 

c 

δ 

dB1 

k1 

= 

 

= Pr 
dτ 

Λ + 
2
 

c 

(B − A), 
 

 

dB 

dB 
= −πk A(τ ) − δ2B(τ ) + π2k A(τ )C(τ ),

 

. (40) 

dτ 
c c c 

dC π2kc 2 

 

3 Scaling 

Let 

A = k1A1, B = k2B1, C = k3C1, τ = δ2τ1. (41) 

Using Eq. (41) in Eq. (39), we get 

dA1 Pr

 

 σ2    

 

 

 

 

  πkcRa

 k2 

 
  

   

= 

dτ1 

   

Λ +

 

2 

c 

    

 

 

4 Λ 

+ 

σ2

 k

1 

δ2 

  

 

 

B1 − A1 

  

, 

 

dτ 
= − 

δ2 

  

k 
A1 − B1 +   

δ2 

 

    

A1C1, 

2  

     c     c 

 

dC1 π2kc k1k2 4π2 

We plan to bring Eq. (39) into the classical form of the Lorenz model: 

dA σ2 
  

 

dτ 
= r*A − B − AC, dC 

δ 

− 
δ c 

2 k 

dτ1 2δ2 

k 3 
A1B1 − 

δ 2 
c 

C1. 

C(τ ). 
 

πkc 

π2kc 

k1k3 . (42) 
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δ 

  

c 

2 

δ 

  

δ 

δ 
− 

  

δ 
c 

δ 

δ 

c 
c 

− 

c 

− 

2 

r 
c 

 
. (43) 

 

 

dτ   
= AB − βC.  

Comparing Eqs. (41) and (42), we now recognise that the following must 

hold: 

  πkcRa k2 
π2kc 

 
k1k3 

  
 

4   Λ + σ2

 k

1 

2 

c 

= 1,

 2 

C = 1, 

k2 (44) 

r* =
 r 

,
π

2

k

c

  
  

k

1

k

2

 
 

 

= 1, β 

= 
4π2 

,
 

,

where σ2 

Λ +

 

2 

c 

2δ2 k3 c     

π2k 2Ra 

= 6 

c 

. (45)

We now solve Eq. (44) for k1, k2 and k3 to get 
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δ 

  

√
2δ 

√
2δ5 

σ2 

Λ + 

δ2 

6   Λ + 
σ

 

δ2 

k1 = ,  k2 = c , k3 = − c . (46) 

π2kc π2kc
2R

a 

π3kc
2Ra 

Using Eq. (46) in Eq. (42), we get 

 

dA1 

dτ1 

= 

Pr*(B1 

— A1), (47) 

dB1 = r*A  − B  − A C , (48) 

dτ1 1 1 1   1 

 

 

where 

dC

1 

dτ

1 

= A1B1 − βC1, (49) 

 

Pr* 

Pr

 

 σ2 
   

r* 
  r  

 

 

 

 

 

 

 

(50) 

= Λ + 2 , 

c 

= 
σ2 . 

Λ + 2 

c 

 

 

 

 

 

δ 
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— A C , 

Equations (47)-(49) form a nonlinear autonomous system(generalized tri- modal Lorenz 

model) and A1, B1 are the amplitudes in normal mode solu- tion and C1 is the amplitude 

of convective mode. It is well known in the problems as these that the trajectories of 

the solution of the Lorenz model in phase-space remain within a bounded region. In the 

next section we show that this trapping region is, in fact, a sphere for the current 

problem. 

If Λ  = 1   and   σ2 = 0  in Eqs.   (47)-(49),   we get the classical form of the Lorenz 

model: 

 

dA1 

dτ1 

 

= Pr(B1 − A1), 

 

 
 

 

 

dτ1 

dC1 

dτ1 

1 

= 

A1B1 

1 1   1 

— βC1.  

 

4 Trapping Region 

Multiplying Eqs. (47) and (48) by A1 and B1 respectively, we get 

 

A 
dA1 

 

 

= Pr*A (B  − A ), (52) 

1 dτ 1 1 1 

 

B 
dB1 

 

 

= r*A B  − B2 − A B C . (53) 

1 dτ 1   1

 

1 

1   1   1 

dB1 = rA — B 
. (51) 

1 

1 
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1 

    

2 1 1 1 

1 1 

1 1 

C1 = − 
A

 

Adding Eqs. (52) and (53), we get 

 

A 
dA1 

+ B 

 

 

dB

1 

 

 

= −Pr*A2 − B2 + A B [Pr* + r* − C ]. (54) 

1 dτ 1 dτ 1 1 1   1 1 

To get an equation of a sphere from Eqs. (49) and (54), we multiply Eq. (49) by [C1 − Pr* 

− r*] and add the resulting equation to Eq. (54). This gives us 

dE 

dτ1 

 

= 

A1 

dA1 
+ 

B
 

τ1 

dB1 
+ 

[C 

1 
dτ 

1
 

  d 

— Pr* − r*] 
dτ

 

[C

1 

— Pr* − r*]. (55) 

Integrating the above equation , we get the trapping region in the form 

E = 
1 

 

A2 + B2 + (C  − Pr* − r*)2

 

. (56) 

The  post-onset  trajectories  of  the  Lorenz  system  (47)√-(49)  enter  and  stay 

within a sphere with center (0, 0, Pr* + r*) and radius 2 given by 

A2 + B2 + (C1 − Pr* − r*)2 = (
√

2)2. (57) 

Noting that the Lorenz model is, in general,  not analytically tractable we now move on 

to derive the analytically tractable Ginzburg-Landau equation from the tri-modal Lorenz 

model. 

If Λ = 1 and σ2 = 0 in Eq. (57), we get the spherical classical form of the Lorenz 

model: 

A2 + B2 + (C1 − Pr − r)2 = (
√

2)2. (58) 

5 Ginzburg-Landau Amplitude Equation from the Lorenz model 

From the Eqs. (45) and (46) B1  and  C1  can be obtained in terms of  A1 as: 

  1  dA1 

B  = + A , (59) 

 

 1 
  

1 

 

 1 

 

 

d2A1 

1 

1 

1 

1 

1 

Pr* 

+ A1 . (60) 
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1 

    

— r A1 + 
Pr* dτ 

1 + Pr* 

β 1 

1 + Pr∗ 

β 

1 

 

 

Pr* 

dτ1 

 

d

A1 ∗ 

 

 

 

1  dA1 

 

 

 

Substituting Eqs. (54) and (55) in Eq. (47), we get a third order differen- 

tial equation in A1.  Neglecting the terms of the type d3A1

 

,
 

dτ1
3 

dA1 2 

, 

dτ1 

 

d2A1
 

dA1  
     

d2A1 
  

 

A1 

form 

dτ1

2 

an

d 

dτ1 dτ1

2 

,  we get the Ginzburg-Landau model in the 

dA1 

 

 

= 

 
     Pr* 1  

  

[β(r* − 1)A 
— A3]. (61) 

 

Equation (56) is a Bernoulli equation in A1 which can be solved using an initial 

condition A(0)=A0 and the solution is given by 

A  = 

s
 Q3 

, (62) 

Q + (Q A−2 − Q )e−2Q3τ1 

 

where 

 

Q 

 

 

= β(r∗ − 1),  Q 

2

 

3 

 

 

 

=

 

Pr∗ 

0 2 

 

 

 
  

1 
, Q 

dτ 2 

dτ1 

dτ1 

+ 

1 

1 

2 

3 

1 
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√ √ 

1 + Pr∗ 

1 
1 + Pr β 1 + Pr 

 = (r∗ − 1)  
Pr∗ 

. 

 

It is one of the intentions of the project to study the pre-onset and post-onset critical 

points of the tri-modal Lorenz model and these are considered in the succeeding section. 

If Λ = 1 and  σ2 = 0 in Eq. (62),  we get the classical form 

A  = 

s
 Q3 

, (63) 

Q + (Q A−2 − Q )e−2Q3τ1 

 

where 

2 3   0 2 

Q  = β(r − 1),  Q 
= 

 
    Pr 1 

,  Q
 

= (r − 1)

 
     Pr 

. 

 

6 Steady Finite Amplitude Convection 

We note that the nonlinear system of autonomous differential equations (47)- (49) is not 

amenable to analytical treatment for the general time-dependent variables and it is to be 

solved by means of a numerical method.  However, in the case of steady motions, these 

equations can be solved in closed form. 

The solution of the system (47)-(49)  with left hand sides omitted is 

(0, 0, 0),  (± β(r∗ − 1), ± β(r∗ − 1), (r∗ − 1)). (64) 

These are the post-onset critical points of the dynamical system (47)-(49). The 

solution A1 = B1 = C1 = 0  of the Lorenz model represents the state of no convection 

and non-zero values represent the convective state. Following standard procedure with 

the linear system of autonomous differential equa- tions, it can be easily shown that the 

only pre-onset critical point is (0, 0, 0) which is a saddle point. In the next section we 

quantify the Hopf-Bifurcation Rayleigh number. 

If Λ = 1 and  σ2 = 0 in Eq. (64),  we get the classical form 

(0, 0, 0),  (±
√

β(r − 1),  ±
√

β(r − 1),  (r − 1)). (65) 

2 3 
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− 

— − 

√
− ±  − − 

.−Pr∗ − λ Pr∗ 0 . 

−(1 + Pr∗) ± 
√

(1 + Pr∗)2 − 4Pr∗(1 − r∗) 

 

7 Hopf-Bifurcation Rayleigh Number 

Linearization of the Lorenz equations (47)-(49) about (X,  Y ,  Z) yields: 

 
Ẋ   

  
−Pr∗ Pr∗ 0 

  
X  

 

 

 

Ẏ  = r∗ − Z −1 −X 

Z˙ Y X −β 

  Y 

 

 

 . (66) 

To get the eigenvalues of the (3 × 3) coefficient matrix, we consider 

 

r∗  − Z −1 − λ −X 

. Y X −β − λ 

= 0. 

. 

Expanding the determinant gives us 

λ3 + (1 + β + Pr∗)λ2 + (β + Pr∗ + Pr∗β + X
2 

Pr∗r∗ + Pr∗Z)λ 

+(Pr∗β + Pr∗X
2 

− Pr∗r∗β + Pr∗Zβ + Pr∗XY ) = 0. 
(67)

 

 

If we take (X, Y , Z)  to be the equilibrium point  (0, 0, 0),  we get 

λ3 + (1 + β + Pr∗)λ2 + (β + Pr∗ + Pr∗β Pr∗r∗)λ + (Pr∗β Pr∗r∗β) = 0. 

(68) 

A root of Eq. (68) is β  and so we can factorize Eq. (68) to get 

(λ + β) [λ2 + (1 + Pr*)λ + Pr*(1 − r*)] = 0. 

The roots(eigenvalues) of Eq. (68) are 

 

 

λ1 = 

 

λ2 = 

, 

2 

 

Z 
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c   

— (1 + Pr∗ + β)µ2 + Pr∗β(1 − r∗) = 0,
)
 

 

(1 + Pr∗) (1 + 

Pr∗)2 4Pr∗(1 r∗) 

, 

2 

λ3 = −β. 

 

Putting λ = iµ in Eq. (68), we get 

−iµ3 −(β +Pr∗ + 1)µ2 +(β + βPr∗ +Pr∗ −Pr∗r∗)iµ + βPr∗(1 − r∗) = 0. (69) The real 

and imaginary parts of Eq. (69) are: 

 

µ3 = −(β + Pr∗ + Pr∗β − Pr∗r∗)µ. . (70) 

Eliminating µ2 between the two equations in Eq. (70), we get an expression for the 

Hopf-bifurcation Rayleigh number in the form: 

Pr∗(Pr∗ + β + 3)(Λ + σ2 
) 

 

rH =  

 δ

2 

(Pr∗ − β − 1) 

. (71) 
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8 Results and Discussion 

Regular and chaotic convective motions are considered in the problem of Rayleigh-

Bénard -Brinkman convection.  The linear stability analysis of the system yields 

information on the onset of regular motion. A weakly nonlinear stability analysis provides 

information on the onset of chaotic motion. The critical wave number, kc, and Rayleigh 

number, Rac, of regular convective motion are given by Eq. (36). The Hopf-bifurcation 

Rayleigh number of chaotic motion, rH, is given by Eq. (71). Table 1 documents the 

values of kc, Rac,   Pr∗  and rH  for three different values of σ2.  It is clear from the table 

that onset of regular convective motions in the presence of porus medium is delayed 

when compared with that in its absence.  A similar observatipn is true of the onset of 

chaotic motions. 
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